THE GROUP $G_{i}(RG)$ FOR A NILPOTENT GROUP G

Masahiko MIYAMOTO

Department of Mathematics, Ehime University, Matsuyama 790, Japan

Communicated by H. Bass Received 15 October 1981

0. Introduction

Let R be a right noetherian domain and K be its quotient field with ch(K) = 0. Recently, for a finite abelian group G, M. Liu [3] got a formula of $G_1(RG)$ (of [1, p. 453], which does not coincide with Quillen's $K_1(\mathcal{M}_{RG})$), which is a generalization of the beautiful H. Lenstra's calculation of $G_0(RG)$, (see [2]). Namely, he got the following isomorphism:

$$G_1(RG) \cong \bigoplus_{\varrho \in X(G)} G_1(R(\varrho))/H, \qquad (9.1)$$

where X(G) is the set of cyclic quotient groups of G and H_{ϱ} will be described below. On the other hand, the author [4] generalized the formula of H. Lenstra into a nilpotent group. Using similar arguments, we will show that a similar formula as M. Lui's holds for a nilpotent group.

Now let G be a finite nilpotent group and write $G = \prod_p G_p$ as the direct product of its Sylow p-subgroups G_p . Let Y be the set of representatives for the K-conjugacy classes of irreducible characters of G and $e(\theta)$ denote the central primitive idempotent of KG corresponding to $\theta \in Y$. Furthermore, let $\pi(G)$ and $\pi(\theta)$ be the sets of all prime divisors of the order of G and the order $n(\theta)$ of G/Ker θ , respectively. Since $\mathscr{M}_{RGe(\theta)/n(\theta)RGe(\theta)}$ can be considered to be a subcategory of $\mathscr{M}_{RGe(\theta)}$, there is a homomorphism:

$$G_1(RGe(\theta)/n(\theta)RGe(\theta)) \rightarrow G_1(RGe(\theta)).$$

Let H_{θ} be the image of this homomorphism. Similarly, H_{ϱ} in (0.1) was defined in [3]. Thus $G_1(RGe(\theta))/H_{\theta}$ is presented by adding to the definition of $G_1(RGe(\theta))$ the additional relations $[M, \alpha] = 0$ whenever $n(\theta)M = 0$.

Theorem. $G_1(RG) \cong \bigoplus_{\theta \in Y} G_1(RGe(\theta))/H_{\theta}$.

For a set S of primes, set $G_S = \prod_{p \in S} G_p$ and θ_S denotes an irreducible constituent of θ_{G_S} . Since θ_{G_S} is homogeneous, θ_S is well-defined. The canonical homomorphisms $G \rightarrow G_S \rightarrow G$ induce, by restriction, an exact functor N_S (see [2]).

1. The homomorphism $\Phi: \bigoplus_{\theta \in Y} G_1(RGe(\theta))/H_{\theta} \rightarrow G_1(RG)$

For
$$\theta \in Y$$
, $M \in \mathcal{M}_{RGe(\theta)}$, and $\alpha \in \operatorname{Aut}_{RGe(\theta)}(M)$, we will write

$$[M, \alpha; \theta] =$$
class of (M, α) in $G_1(RGe(\theta))$,

$$[M, \alpha; \langle \theta \rangle] = \text{class of } (M, \alpha) \text{ in } G_1(RGe(\theta))/H_{\theta},$$

 $[M, \alpha; G] =$ class of (M, α) in $G_1(RG)$

where we embed $\mathcal{M}_{RGe(\theta)}$ in \mathcal{M}_{RG} via the canonical projection

$$RG \to RG/(RG \cap KG(1-e(\theta))) \cong RGe(\theta).$$

We define ϕ'_{θ} : $G_1(RGe(\theta)) \rightarrow G_1(RG)$ by

$$\phi_{\theta}'[M,\alpha;\theta] = \sum_{S \subseteq \pi(\theta)} (-1)^{\#(\pi(\theta)-S)}[N_S M,\alpha;G].$$

Since every RG-module N with pN=0 has a nonzero $\operatorname{End}_{RG}(N)$ -invariant RG-submodule on which G_p acts trivially, by applying the same argument in [3], we have that $\phi'_{\theta}(H_{\theta}) = 0$. Namely, we can get a homomorphism

$$\Phi: \bigoplus_{\theta \in Y} G_1(RGe(\theta))/H_{\theta} \to G_1(RG).$$

2. The inverse $\Psi: G_1(RG) \rightarrow \bigoplus_{\theta \in Y} G_1(RGe(\theta))/H_{\theta}$

Let $\theta \in Y$ and let S be a set of primes. The functor N_S carries the subcategory $\mathscr{M}_{RGe(\theta_S)}$ to $\mathscr{M}_{RGe(\theta_S)}$. Thus we can define

$$\psi_{\theta}: G_1(RGe(\theta)) \to \bigoplus_{\chi \in Y} G_1(RGe(\chi)) / H_{\chi}$$

by $\psi_{\theta}[M, \alpha; \theta] = \sum_{S \subseteq \pi(\theta)} [N_S M, \alpha; \langle \theta \rangle].$

Lemma 1. Let $M \in \mathscr{M}_{RG}$. Then there is a chain of submodules $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_i = 0$ such that, for each *i*, M_i is stable under $\operatorname{End}_{RG}(M)$, and $M_i/M_{i+1} \in \mathscr{M}_{RGe(\theta)}$ for some $\theta \in Y$.

Except for the assertion about $\operatorname{End}_{RG}(M)$ -invariant, this is just Lemma 2 in [4]. Moreover, since $M_i = \prod_{i=1}^{i} (1 - e(\theta_i))M$ in [4] is invariant under $\operatorname{End}_{RG}(M)$.

Let $M \in \mathscr{M}_{RG}$ and $\alpha \in \operatorname{Aut}_{RG}(M)$. With the notation of Lemma 1, let $\alpha_i \in \operatorname{Aut}_{RG}(M_i/M_{i+1})$ be the automorphism induced by α , and choose $\theta_i \in Y$ so that $M_i/M_{i+1} \in \mathscr{M}_{RGe(\theta_i)}$. Put

$$\Psi[M,\alpha;G] = \sum_{i=0}^{r-1} \psi_{\theta_i}[M_i/M_{i+1},\alpha_i;\langle\theta_i\rangle].$$

By Lemmas 1 and 3 in [4], this is independent of the choice of the θ_i 's. Moreover, Ψ does not depend on the filtration of M, that is, Ψ is well-defined. To see that Φ and Ψ are the inverses of each other, we suffice to follow the calculation in [2].

This concludes the proof of the Theorem.

References

- [1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
- [2] H. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra 20 (1981) 173-193.
- [3] M. Liu, The group $G_1(R\pi)$ for π a finite abelian group, J. Pure Appl. Algebra 24 (1982) 287-291.
- [4] M. Miyamoto, Grothendieck groups of integral nilpotent group rings, J. Algebra, to appear.