THE GROUP $\boldsymbol{G}_{1}(\boldsymbol{R G})$ FOR A NILPOTENT GROUP \boldsymbol{G}

Masahiko MIYAMOTO
Department of Mathematics, Ehime University, Matsuyama 790, Japan

Communicated by H. Bass
Received 15 October 1981

0. Introduction

Let R be a right noetherian domain and K be its quotient field with $\operatorname{ch}(K)=0$. Recently, for a finite abelian group G, M. Liu [3] got a formula of $G_{1}(R G)$ (of [1, p. 453], which does not coincide with Quillen's $K_{1}\left(. \|_{R G}\right)$), which is a generalization of the beautiful H. Lenstra's calculation of $G_{0}(R G)$, (see [2]). Namely, he got the following isomorphism:

$$
\begin{equation*}
G_{1}(R G) \equiv \bigoplus_{\varrho \in X(G)} G_{1}(R(\varrho)) / H_{3} \tag{0.1}
\end{equation*}
$$

where $X(G)$ is the set of cyclic quotient groups of G and H_{ϱ} will be described below. On the other hand, the author [4] generalized the formula of H. Lenstra into a nilpotent group. Using similar arguments, we will show that a similar formula as M. Lui's holds for a nilpotent group.

Now let G be a finite nilpotent group and write $G=\prod_{p} G_{p}$ as the direct product of its Sylow p-subgroups G_{p}. Lei Y be the set of representatives for the K-conjugacy classes of irreducible chatacters of G and $e(\theta)$ denote the central primitive idempotent of $K G$ corresponding to $\theta \in Y$. Furthermore, let $\pi(G)$ and $\pi(\theta)$ be the sets of all prime divisors of the order of G and the order $n(\theta)$ of $G / \operatorname{Ker} \theta$, respectively. Since. $\|_{R G e(\theta) / n(\theta) R G e(\theta)}$ can be ccnsidered to be a subcategory of . " ${ }_{R G e(\theta)}$, there is a homomorphism:

$$
G_{1}(R G e(\theta) / n(\theta) R G e(\theta)) \rightarrow G_{1}(R G e(\theta))
$$

I.ef H_{θ} be the image of this homomorphism. Similarly, H_{ϱ} in (0.1) was defined in [3]. Thus $G_{1}(\operatorname{RGe}(\theta)) / H_{\theta}$ is presented by adding to the definition of $G_{1}(R G e(\theta))$ the additional relations $[M, \alpha]=0$ whenever $n(\theta) M=0$.

Theorem. $G_{1}(R G) \cong \oplus_{\theta \epsilon Y} G_{1}(R G e(\theta)) / H_{\theta}$.

For a set S of primes, set $G_{S}=\prod_{p \in S} G_{p}$ and θ_{S} denotes an irreducible constituent of $\theta_{G_{S}}$. Since $\theta_{G_{S}}$ is homogeneous, θ_{S} is well-defined. The canonical
homomorphisms $G \rightarrow G_{S} \rightarrow G$ induce, by restriction, an exact functor N_{S} (see [2]).

1. The homomorphism $\Phi: \oplus_{\theta \in Y} G_{1}(R G e(\theta)) / H_{\theta} \rightarrow G_{1}(R G)$

For $\theta \in Y, M \in \|_{R G e(\theta)}$, and $\alpha \in \operatorname{Aut}_{R G e(\theta)}(M)$, we will write

$$
\begin{aligned}
& {[M, \alpha ; \theta]=\text { class of }(M, \alpha) \text { in } G_{1}(R G e(\theta)),} \\
& {[M, \alpha ;\langle\theta\rangle]=\text { ciass of }(M, \alpha) \text { in } G_{1}(R G e(\theta)) / H_{\theta},} \\
& {[M, \alpha ; G]=\text { class of }(M, \alpha) \text { in } G_{1}(R G)}
\end{aligned}
$$

where we embed. $\|_{R G e(\theta)}$ in.$\|_{R G}$ via the canonical projection

$$
R G \rightarrow R G /(R G \cap K G(1-e(\theta))) \cong R G e(\theta)
$$

We define $\phi_{\theta}^{\prime}: G_{1}(R G e(\theta)) \rightarrow G_{1}(R G)$ by

$$
\phi_{\theta}^{\prime}[M, \alpha ; \theta]=\sum_{S \varsigma \pi(\theta)}(-1)^{\#(\pi(\theta)-S)}\left[N_{S} M, \alpha ; G\right]
$$

Since every $R G$-module N with $p N=0$ has a nonzero $\operatorname{End}_{R G}(N)$-invariant $R G$-submodule on which G_{p} acts trivially, by applying the same argument in [3], we have that $\phi_{\theta}^{\prime}\left(H_{\theta}\right)=0$. Namely, we can get a homomorphism

$$
\Phi: \oplus_{\theta \in Y} G_{1}(R G e(\theta)) / H_{\theta} \rightarrow G_{1}(R G) .
$$

2. The inverse $\Psi: G_{1}(R G) \rightarrow \oplus_{\theta \epsilon Y} G_{1}(R G e(\theta)) / H_{\theta}$

Let $\theta \in Y$ and let S be a set of primes. The functor N_{S} carries the subcategory .$\|_{R G e(\theta)}$ to.$\|_{R G e\left(\theta_{S}\right)}$. Thus we can define

$$
\psi_{\theta}: G_{1}(R G e(\theta)) \rightarrow \oplus_{\chi \in Y} G_{1}(R G e(\chi)) / H_{\chi}
$$

by $\psi_{\theta}[M, \alpha ; \theta]=\sum_{\varsigma_{\varsigma \pi(\theta)}}\left[N_{S} M, \alpha ;\langle\theta\rangle\right]$.
Lemma 1. Let $M \in . \|_{R G}$. Then there is a chain of submodules $M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq$ $M_{t}=0$ such that, for each i, M_{i} is stable under $\operatorname{End}_{R G}(M)$, and $M_{i} / M_{i+1} \in \|_{R G e(\theta)}$ for some $\theta \in Y$.

Except for the assertion about $\operatorname{End}_{R G}(M)$-invariant, this is just Lemma 2 in [4]. Moreover, since $M_{i}=\prod_{j=1}^{i}\left(1-e\left(\theta_{j}\right)\right) M$ in [4] is invariant under $\operatorname{End}_{R G}(M)$.

Let $M \in . \|_{R G}$ and $\alpha \in \operatorname{Aut}_{R G}(M)$. With the notation of Lemma 1 , let $\alpha_{i} \in \mathrm{Aut}_{R G}\left(M_{i} / M_{i+1}\right)$ be the automorphism induced by α, and choose $\theta_{i} \in Y$ so that $M_{i} / M_{i+1} \in \|_{R G e\left(\theta_{i}\right)}$. Put

$$
\Psi[M, \alpha ; G]=\sum_{i=0}^{1-1} \psi_{\theta_{i}}\left[M_{i} / M_{i+1}, \alpha_{i} ;\left\langle\theta_{i}\right\rangle\right] .
$$

By Lemmas 1 and 3 in [4], this is independent of the choice of the θ_{i} 's. Moreover, Ψ does not depend on the filtration of M, that is, Ψ is well-defined. To see that Φ and Ψ are the inverses of each other, we suffice to follow the calculation in [2].

This concludes the proof of the Theorem.

References

[1] H. Bass, Algebraic K-theory (Benjümin, New York, 1968).
[2] H. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra 20 (1981) 173-193.
[3] M. Liu, The group $G_{1}(R \pi)$ for π a finite abelian group, J. Pure Appl. Algebra 24 (1982) 287-291.
[4] M. Miyamoto, Grothendieck groups of integral nilpotent group rings, J. Algebra, to appear.

